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Abstract Wediscuss the idea of using continuous dynamical systems tomodel general
high-dimensional nonlinear functions used in machine learning. We also discuss the
connection with deep learning.
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The number one task inmachine learning is to efficiently create a sufficiently rich class
of functions that can represent the data with the desired accuracy. The most straight-
forward approach is that of approximation theory: One starts with linear functions and
then builds nonlinear ones using splines, wavelets or other basis functions [1]. The
obvious obstacle with this approach is the curse of dimensionality. To deal with this
issue, one often has to make simplified “ansatz,” by postulating special forms for the
functions, for example an additive form or multiplicative form [2].

In recent years, a new class of techniques has shown remarkable success, the deep
neural network model [3]. Neural network is an old idea, but recent experience has
shown that deep networks withmany layers seem to do a surprisingly good job inmod-
eling complicated data sets. The difference between neural networks and traditional
approximation theory is that neural networks use compositions of simple functions
to approximate complicated ones, i.e., the neural network approach is compositional,
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2 W. E

whereas classical approximation theory is usually additive. Although we still lack a
theoretical framework for understanding deep neural networks, their practical success
has been very encouraging.

In this note, we go one step further, by exploring the possibility of producing
nonlinear functions using continuous dynamical systems, pushing the compositional
approach to an infinitesimal limit. In the framework of supervised learning, this gives
rise to a new class of control problems. In this view, the deep neural networks can be
thought of as being discrete dynamical systems. Compared with deep neural networks,
there are several potential advantages with a continuous approach.

1. Mathematically it is easier to think about and deal with continuous dynamical
systems. Continuous formulation offers more flexibility (for example adding con-
straints, adapting the dynamical system to the problem, imposing structure on the
dynamical system), and it is easier to analyze continuous dynamical systems than
discrete ones.

2. Deep neural network can be thought of as a discretization of the continuous dynam-
ical systems.However, from the viewpoint of discretizing dynamical systems, there
aremany possibilities that one can explore. For example, one can use adaptive time
step size, which corresponds to choosing the layers adaptively. One can use high
order or even implicit discretization, and these do not yet have an analog in deep
neural networks. One can also use advanced numerical methods for training, such
as the multi-grid method or the parallel shooting method (see [4,5]).

3. Most models in physical sciences (physics, chemistry, etc) are represented using
dynamical systems in the form of differential equations. The continuous dynamical
systems approach makes it easier to combining ideas from machine learning and
physical modeling.

4. The vast majority of the applied mathematics community is familiar with differen-
tial equations. The continuous dynamical systems approach to machine learning
will be of particular interest to them.

In this note we only introduce some of the simplest ideas, leaving their further
exploration and practical implementation to future work (see for example [4,5]). We
note that continuous dynamical systems approach was mentioned in [6–8]. The con-
nection to control theory has been explored in the work of [7], among others. See also
the interesting blog by Recht [9]. However, it is the author’s believe that there is still
lots of room for development in this setting.

1 Formulation

Consider the differential equation in Rd :

dz

dt
= f (t, z), z(0) = x . (1.1)

The solution at time t will be denoted by z(t, x). Fix a time horizon T , the flow map:
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A Proposal on Machine Learning via Dynamical Systems 3

x → z(T, x) (1.2)

gives rise to a function of x , which in general is nonlinear. The basic idea behind the
dynamical system approach to supervised learning is to tune f so that the flow map
can produce the kind of nonlinear function needed to fit the data.

We will consider supervised learning. At the abstract level, the problem can be
formulated as follows. Let μ be a probability distribution on a domain D in R

d . Let
y be a function on D. If y is a discrete valued function, then the problem is called
a classification problem. Otherwise, the problem is called a regression problem. Let
{xi } be a finite sample of μ, and yi = y(xi ) + εi be the label associated with xi . Here
εi denotes measurement noise. Our problem is to predict y from the data {(xi , yi )}.

There are several well-known very elementary supervised learning models, for
example linear regression for the regression problem and support vector machine
(SVM) and logistic regression for the classification problem. Associated with each of
these models, there is a loss function. In the case of linear regression, the loss function
is (u(xi ) − yi )2 where u is the fitted linear function. Below we will focus on the
regression problem.

Consider the dynamical system:

dz

dt
= f (A(t), z), z(0) = x, (1.3)

where f is a function chosen beforehand, A is the control. Fix a time horizon T . Our
goal is to choose A such that the flowmap at time T can be fitted accurately with linear
regression. Let uα(x) = α1 · z(T, x)+α0 where α1 ∈ R

d , α0 ∈ R
1, and α = (α0, α1).

Our objective is to

min
α,A

∫
D

‖y(x) − u(x)‖2dμ(x). (1.4)

Obviously we can use more general loss function L in the last expression:

min
α,A

∫
D
L(y(x), u(x))dμ(x). (1.5)

In practice, we only have a finite set of data {(xi , yi )}, where {xi } is a finite sample
of μ and yi is the label associated with xi , so (1.3) should really be replaced by:

min
α,A

N∑
i=1

(yi − u(xi ))
2. (1.6)

(1.5) and (1.6) have the flavor of a control problem of an unusual type. Here we are
interested in a large collection of initial data, instead of a single initial configuration
and a single target.

We need to specify the function f . This is where some creative thinking has to take
place. One simplest possible example is:
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4 W. E

1. Component-wise nonlinearity

f (A(t), z) = (β1(t)F(A1(t)z1), β2(t)F(A2(t)z2), · · · , βd(t)F(Ad(t)zd))
T ,

(1.7)

where F is a simple nonlinear function, for example the sigmoid function: F(t) =
1/(1 + e−t ). We have also added the functions (β1, β2, · · · , βd) to the set of
controls.

2. Full nonlinearity

f (A(t), z) = β(t)F(A(t)z), (1.8)

where F is some simple vector-valued nonlinear function.

It is straightforward to extend this formulation to other supervised learning models
such as the logistic regression and support vector machines.

1.1 Finding the Optimal Control

To find the optimal control, we almost always need to compute the gradient of the
objective function with respect to the control. Here we show how this can be done.
Our notation is a bit sloppy here. But this makes things more transparent.

Fix t ∈ [0, T ]. Define

I (α, A) =
∫

(y(x) − u(x))2 dμ(x). (1.9)

We will compute δ I
δA(t) . It is easy to see that

δ I

δA(t)
= −2α1 ·

∫
(y(x) − α1 · z(T, x) − α0)

δz(T, x)

δA(t)
dμ(x). (1.10)

To compute δz(T,x)
δA(t) , consider the dynamical system in which the control is kept the

same except in a small neighborhood around t , A is perturbed by a small amount.
The leading order perturbation to the solution of the dynamical system is given by the
following problem:

dv(τ)

dτ
= ∇z f (A(τ ), z(τ, x))v(τ ), τ > t (1.11)

with the condition v(t) = ∇A f (A(t), z(t, x)). We then have

δz(T, x)

δA(t)
= v(T ). (1.12)
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A Proposal on Machine Learning via Dynamical Systems 5

At the first sight, (1.11) and (1.12) should be solved forward in time. However, note
that we are interested in solving this equation for multiple values of t . Therefore, it
might be more advantageous to solve (1.11) and (1.12) backward in time, i.e., first by
forming the product of the propagators from time T to time t and then multiplying
this propagator by the initial value at time t . In this way, (1.11) and (1.12) can be
solved simultaneously for all t in one sweep. This corresponds to the idea of back
propagation.

With these results in place, it is now clear how to formulate various optimization
algorithms, including the gradient decent and stochastic gradient decent algorithm.

2 Connection with Deep Neural Network

Deep neural networks can be considered as discrete dynamical systems, the basic
dynamics at each step being a linear transformation followed by a component-wise
nonlinear (activation) function. As such, it is among the simplest nonlinear discrete
dynamical systems one can imagine. These discrete dynamical systems offer another
feature, namely the dimensionality of the system can be changed from step to step,
simply by changing the size of the linear transformation.

The continuous dynamical systems approach advocated here can in principle incor-
porate more general dynamics. This added flexibility can be important in many
situations, such as the ones encountered in physical science. For example, when try-
ing to learn the inter-atomic potential of a molecular dynamics system with both short
and long range interactions, this added flexibility should come in handy. Continuous
dynamical systems do not allow the change of dimensionality. Therefore, the lifting
and projection of dynamics to higher and lower dimensions have to be performed at
the beginning or end of the dynamics, i.e., at t = 0 or t = T .

The behavior of dynamical systems at large times is a notoriously difficult prob-
lem in mathematics, particularly for discrete dynamical systems. One may encounter
situations where the dynamics explodes, converges to stationary states or exhibits
chaotic behavior. This may explain some of the difficulties (such as the vanishing and
explosion of gradients) encountered in the training of deep neural networks. Continu-
ous dynamical systems also experience these difficulties. However, in the continuous
setting, several ideas can be explored to help alleviating these problems:

1. Imposing structure on the dynamical system. The simplest structures that one can
imagine are the Hamiltonian structure or the gradient flow structure [10].

2. Sophisticated numerical discretization methods, such as adaptive time stepping,
implicit or semi-implicit algorithms. These are particularly helpful for long time
(large time horizon) computations.

2.1 Connection with Deep Residual Networks

To better appreciate these points, we take a more detailed look at the deep residual
networks. In its general form, deep residual networks are described by the following
discrete dynamical system [11]:
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6 W. E

yl = h(zl) + F (zl ,Wl), (2.1)

zl+1 = g(yl), (2.2)

where zl and zl+1 are the input and output of the l-th layer, yl is an auxiliary variable
for the l-th layer, h and g are some mappings which could in principle be nonlinear. A
main result of [11], found through numerous numerical experiments, is that for very
deep networks (hundreds or thousands of layers), training is the easiest if both g and
h are the identity map [11]. This is quite expected from the viewpoint of dynamical
systems. In fact, denote by G the inverse map of g, we can then write the above
dynamical system as:

zl+1 = G(h(zl) + F (zl ,Wl)). (2.3)

In order to have a stable behavior (nonvanishing or exploding), the gradient of the right
hand side should be close to an identity map. Assuming thatF is a small perturbation,
we then need

∇G∇h ∼ I. (2.4)

This is certainly fulfilled when both g and h are identity maps. In general, one has

zl+1 ∼ G(h(zl)) + ∇G · F (zl ,Wl). (2.5)

Thismeans that the leading order behavior is dominated byG(h). The added flexibility
fromchoosingmore general g and h does not offermuch real improvement if onewants
to use a large number of layers.

Let g and h both be identity maps. Then (2.3) becomes:

zl+1 = zl + F (zl ,Wl). (2.6)

This can be viewed as a discretization of the dynamical system:

dz

dt
= F (z,W (t)). (2.7)

In fact the simplest discretization of (2.7) takes the form:

zl+1 = zl + �tlF (zl ,Wl), (2.8)

where �tl is the step size at the l-th time step. By adaptively choosing �tl , one
can improve the efficiency and stability of the algorithm at the same time [12]. In
the language of deep learning, adaptive time stepping means adaptively choosing the
layers.

Remark It should be noted that contrary to the conventional problem of solving
differential equations, here our concern is not the dynamical system itself, but rather
the representation of the data. Therefore, accuracy in the numerical approximation of
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A Proposal on Machine Learning via Dynamical Systems 7

the differential equation is not our primary concern, the training error, efficiency and
stability in the training are our main interests.

3 The Representability and Controllability Problem

One important question is whether the flow map of a given dynamical system can
represent the data at hand. The same issue is also baffling the deep learning community.
From our perspective, this representability problem can be viewed as a controllability
problem.

The standard controllability problem asks the question: Given an initial and a target
position, canweuse control tomove the system from the initial position to an arbitrarily
small neighborhood of the target position during the specified time horizon. For some
general results, we refer to [13]. Our concern here is different. Here we are interested
in the following question. Given a final supervised learning model, such as linear
regression, can we use the control to move the flow map to a set in which the specified
model works satisfactorily?

Toget someclear idea about this, let us consider an idealized version of this problem:
Given a mapping M on D and given T , can we choose the control such that z(x, T ) =
M(x) for all x ∈ D?

The one-dimensional version of this problem may shed some light. Consider the
case when our dynamical system takes the form:

dz

dt
= A(t) f (z) (3.1)

For simplicity of illustration, we assume that f does not vanish. We can rewrite the
above equation as

1

f (z)

dz

dt
= A(t) (3.2)

Integrating both sides, we obtain

G(M(x)) − G(x) =
∫ T

0
A(t)dt (3.3)

where G is the primitive function of 1/ f . The right hand side of (3.3) is independent
of x . Therefore for (3.3) to hold, the left hand side should also be independent of x .
This imposes a severe constraint on M and f .

This example is highly simplified. But it gives us some hints about the issues
involved in understandingwhether the dynamical system approach gives a goodmodel
to the learning problem at hand. In general, the viewpoint of exact representability is
very limited. Instead, one should take an approximation viewpoint. For that purpose,
one may consider lifting the dynamical system to higher and higher dimensions, i.e.,
instead of consider the dynamical system in the same dimension as the data, one may
consider the dynamical system in a different dimension, and use
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8 W. E

z(0) = Px (3.4)

as the initial condition. Here P is a lifting matrix. One may also consider extending
(1.8) to

f (A(t), z) =
n∑

k=1

βk(t)Fk(Ak(t)z). (3.5)

In the general case, if the mapping M is smoothly homotopic to the identity map,
i.e., if there exists a one parameter family of mappingsG(·) : [0, 1] → diff(D), where
diff(D) is the space of all diffeomorphism on D, such that G(0, x) = x,G(1, x) =
M(x), then there always exists an f : [0, 1] × D → R

d , such that the flow map
generated by the dynamical system

dz

dt
= f (t, z)

gives rise to M : z(1, x) = M(x).
To see this one just has to define f (t, z) = ∂G

∂t (t,G−1(z)), whereG−1 is the inverse
of the mapping G at time t .

4 Extensions

4.1 Continuum in Space

For some tasks in computer vision and artificial intelligence, it is of interest to view
the data itself as being continuum objects. This situation can be found, for example,
in image recognition and voice recognition. In this case, we need to introduce another
independent variable to represent space.

When the spatial variable is taken into account, the most commonly seen dynamical
systems that are in the form of partial differential equations (PDEs). These dynamical
systems are local since differentiation is a local operation. For applications in vision,
the situation seems to be quite different. The dynamical systems that are of interest
should be nonlocal in nature.

Oneway of introducing nonlocal operation is to use integral operators. For example,
we may replace A(t)z in (1.7) by

∫
K (x, y, t)z(y, t)dy where K is some kernel

function (in this section we use x and y to denote the spatial variable). To ensure
translation invariance, the kernel function should take the form of a convolution:

∫
K (x, y, t)z(y, t)dy =

∫
K0(x − y, t)z(y, t)dy = (K0 ∗ z)(x, t). (4.1)

The simplest dynamical system that uses this convolution operator may take the form:

∂z

∂t
(x, t) = f ((K0 ∗ z)(x, t)), (4.2)

123



A Proposal on Machine Learning via Dynamical Systems 9

where f is some nonlinear function. This leads to a model that is similar in spirit to
the convolutional neuron network model.

4.2 Adding Constraints

The dynamical system formulation also allows us to impose constraints with relative
ease. For example, one might ask the control A to be orthogonal at each time step:
A(t)T A(t) = I where I is the identity matrix. One might also impose constraints on
z. This can be done by introducing suitable Lagrange multipliers.

4.3 Structure of the Dynamical System

We may ask the dynamical system to have certain structure. For example we may ask
the dynamical system to be a gradient flow. One such example is given below (see
the section on density estimation). We may also ask the dynamical system to have a
Hamiltonian structure. This direction remains to be explored.

4.4 Regularization

Within the context of control theory, it is natural to consider regularized models,
by adding regularization terms on the control. For example, two natural choice of
regularization terms are

∫ T
0 ‖A(t)‖1dt and

∫ T
0 ‖A(t)‖2Fdt where ‖A(t)‖1 and ‖A(t)‖F

are the L1 norm and the Frobenius norm of A(t), respectively. In the language of
control theory, these regularization terms give rise to the “running cost” for the model
(the costs considered in (1.4), (1.5), (1.6) are “terminal costs”). The corresponding
Bellman equation becomes less degenerate in the presence of running costs.

Deep neural network models usually do not include such regularization terms,
except that pooling and drop out operations often used there may lead to some regu-
larization effects.

5 Other Examples

There are numerous other examples of learning via dynamical systems. Here we only
mention a few.

5.1 Clustering Dynamics

One well-known model of clustering dynamics is the Hegselmann–Krause System.
An interesting noisy form of this dynamics is described by the following system of
stochastic differential equations (see [14]):

dxi = − 1

N

∑
j, |xi−x j |≤R

(xi − x j ) + σdWi , xi (0) = x0i . (5.1)
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10 W. E

Here the {xi }’s are the interacting agents, the {Wi }’s are independentWiener processes,
R is the interaction range. This can be considered as a clustering algorithm for the
data set {x0i }. In the continuous limit when there is a continuum of agents, the density
of the agents ρ evolves according to:

∂ρ(x, t)

∂t
= −ρ(x, t)

∫
|x−y|≤R

(x − y)ρ(y, t)dy + σ 2

2
�ρ(x, t). (5.2)

As shown in [14], PDE (partial differential equations) methods can be quite powerful
in helping us to understand the dynamics of the Hegselmann–Krause System.

5.2 Density Estimation

In a very interesting paper, Tabak and Vanden-Eijnden proposed performing density
estimation by mapping the initial distribution of data to a target distribution, usually
an isotropic Gaussian [15]. This mapping can be obtained from the gradient flow
dynamics of the log-likelihood function. In the continuous form (when the data set is
a continuum), the flow dynamics takes the form:

∂φ(x, t)

∂t
= ∇μ(x)

μ(x)
ρ(x, t) − ∇ρ(x, t), ρ(x, t) = ρ0(z)

J (z, t)
, x = φ(z, t). (5.3)

Here φ is the flowmap, ρ0 is the initial distribution,μ is the target distribution (usually
a Gaussian), J is the Jacobian of the flow map. The evolution of the density takes a
simpler form:

∂ρ(x, t)

∂t
= ∇

((
∇ρ(x, t) − ∇μ(x)

μ(x)
ρ(x, t)

)
ρ(x, t)

)
. (5.4)

The idea behind this can be useful for other unsupervised learning tasks.

6 Conclusions

We proposed some ideas about using continuous dynamical systems as a tool for
machine learning. Besides offering some algorithmic and analytical advantages, we
also hope that this provides an attractive alternative view to deep learning.

There are numerous open questions. The most important one is whether there are
other natural candidates for the underlying dynamical systems besides the ones sug-
gested in deep learning. Practical issues such as discretization and advanced numerical
algorithms also remain to be explored.
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